Comparison of the Multi Layer Perceptron and the Nearest Neighbor Classifier for Handwritten Numeral Recognition

نویسندگان

  • Kaushik Roy
  • Chitrita Chaudhuri
  • Mahantapas Kundu
  • Mita Nasipuri
  • Dipak Kumar Basu
چکیده

The work presents the results of an investigation conducted to compare the performances of the Multi Layer Perceptron (MLP) and the Nearest Neighbor (NN) classifier for handwritten numeral recognition problem. The comparison is drawn in terms of the recognition performance and the computational requirements of the individual classifiers. The results show that a two-layer perceptron performs comparably to a NN like standard pattern classifier in recognizing unconstrained handwritten numerals, while being computationally more cost effective. The work signifies the usefulness of the MLP as a standard pattern classifier for recognition of handwritten numerals with a large feature set of 96 features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Handwritten Arabic Numeral Recognition using a Multi Layer Perceptron

Handwritten numeral recognition is in general a benchmark problem of Pattern Recognition and Artificial Intelligence. Compared to the problem of printed numeral recognition, the problem of handwritten numeral recognition is compounded due to variations in shapes and sizes of handwritten characters. Considering all these, the problem of handwritten numeral recognition is addressed under the pres...

متن کامل

یک روش دو مرحلهای برای بازشناسی کلمات دستنوشته فارسی به کمک بلوکبندی تطبیقی گرادیان تصویر

This paper presented a two step method for offline handwritten Farsi word recognition. In first step, in order to improve the recognition accuracy and speed, an algorithm proposed for initial eliminating lexicon entries unlikely to match the input image. For lexicon reduction, the words of lexicon are clustered using ISOCLUS and Hierarchal clustering algorithm. Clustering is based on the featur...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Multilevel Classifiers in Recognition of Handwritten Kannada Numerals

The recognition of handwritten numeral is an important area of research for its applications in post office, banks and other organizations. This paper presents automatic recognition of handwritten Kannada numerals based on structural features. Five different types of features, namely, profile based 10-segment string, water reservoir; vertical and horizontal strokes, end points and average bound...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Inf. Sci. Eng.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2005